§ 1.4. Измерение информации
Ключевые слова:
- бит
- информационный вес символа
- информационный объём сообщения
- единицы измерения информации
1.4.1. Алфавитный подход к измерению информации
Вспомним, что, с точки зрения субъективного подхода к определению информации, информация — это содержание сообщений, которые человек получает из различных источников. Одно и то же сообщение может нести много информации для одного человека и не нести её совсем для другого человека. При таком подходе количество информации определить однозначно затруднительно.
Алфавитный подход позволяет измерить информационный объём сообщения, представленного на некотором языке (естественном или формальном), независимо от его содержания.
Для количественного выражения любой величины необходима, прежде всего, единица измерения. Измерение осуществляется путём сопоставления измеряемой величины с единицей измерения. Сколько раз единица измерения «укладывается» в измеряемой величине, таков и результат измерения.
При алфавитном подходе считается, что каждый символ некоторого сообщения имеет определённый информационный вес — несёт фиксированное количество информации. Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита. Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит. Обратите внимание, что название единицы измерения информации «бит» (bit) происходит от английского словосочетания «binary digit» — «двоичная цифра».
За минимальную единицу измерения информации принят 1 бит. Считается, что таков информационный вес символа двоичного алфавита. |
1.4.2. Информационный вес символа произвольного алфавита
Ранее мы выяснили, что алфавит любого естественного или формального языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита N связана с разрядностью двоичного кода i, требуемой для кодирования всех символов исходного алфавита, соотношением: N = 2 i .
Разрядность двоичного кода принято считать информационным весом символа алфавита. Информационный вес символа алфавита выражается в битах.
Информационный вес i символа алфавита и мощность N алфавита связаны между собой соотношением: N = 2 i . |
Задача 1. Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?
Решение. Составим краткую запись условия задачи.
Известно соотношение, связывающее величины i и N: N = 2 i .
С учетом исходных данных: 8 = 2 i . Отсюда: i = 3.
Полная запись решения в тетради может выглядеть так:
1.4.3. Информационный объём сообщения
Информационный объём сообщения (количество информации в сообщении), представленного символами естественного или формального языка, складывается из информационных весов составляющих его символов.
Информационный объём I сообщения равен произведению количества К символов в сообщении на информационный вес i символа алфавита: Задача 2. Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт? Ответ’: 700 битов. Задача 3. Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение? Ответ: 16 символов. 1.4.4. Единицы измерения информацииВ наше время подготовка текстов в основном осуществляется с помощью компьютеров. Можно говорить о «компьютерном алфавите», включающем следующие символы: строчные и прописные русские и латинские буквы, цифры, знаки препинания, знаки арифметических операций, скобки и др. Такой алфавит содержит 256 символов. Поскольку 256 = 2 8 , информационный вес каждого символа этого алфавита равен 8 битам. Величина, равная восьми битам, называется байтом. 1 байт — информационный вес символа алфавита мощностью 256. 1 байт = 8 битов |
Бит и байт — «мелкие» единицы измерения. На практике для измерения информационных объёмов используются более крупные единицы:
1 килобайт = 1 Кб = 1024 байта = 2 10 байтов
1 мегабайт = 1 Мб = 1024 Кб = 2 10 Кб = 2 20 байтов
1 гигабайт = 1 Гб = 1024 Мб = 2 10 Мб = 2 20 Кб = 2 30 байтов
1 терабайт = 1 Тб = 1024 Гб = 2 10 Гб = 2 20 Мб = 2 30 Кб = 2 40 байтов
Задача 4. Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа этого сообщения? Сколько символов содержит алфавит, с помощью которого записано это сообщение? Решение.
Ответ: 256 символов.
Самое главное
При алфавитном подходе считается, что каждый символ некоторого сообщения имеет опредёленный информационный вес — несёт фиксированное количество информации.
1 бит — минимальная единица измерения информации.
Информационный вес i символа алфавита и мощность N алфавита связаны между собой соотношением: N = 2 i . Информационный объём I сообщения равен произведению количества К символов в сообщении на информационный вес i символа алфавита: I = K • i.
1 байт = 8 битов.
Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (2 10 ) раза.
Вопросы и задания
- В чем суть алфавитного подхода к измерению информации?
- Что принято за минимальную единицу измерения информации?
- Что нужно знать для определения информационного веса символа алфавита некоторого естественного или формального языка?
- Определите информационный вес i символа алфавита мощностью N, заполняя таблицу:
Источник