- Геотермальная энергетика
- Содержание
- Ресурсы
- Достоинства и недостатки
- Достоинства
- Недостатки
- Геотермальная электроэнергетика в мире
- Филиппины
- Мексика
- Италия
- Исландия
- Кения
- Россия
- Япония
- Классификация геотермальных вод [14]
- По температуре
- По минерализации (сухой остаток)
- По общей жёсткости
- По кислотности, рН
- По газовому составу
- По газонасыщенности
- Петротермальная энергетика
Геотермальная энергетика
Запасы тепла Земли практически неисчерпаемы — при остывании ядра на 1 °C выделится 2*10 20 кВт*ч энергии, что в 10000 раз больше, чем содержится во всем разведанном ископаемом топливе, и в миллионы раз больше годового энергопотребления человечества. При этом температура ядра превышает 6000 °C, а скорость остывания оценивается в 300-500 °C за миллиард лет.
Тепловой поток, текущий из недр Земли через ее поверхность, составляет 47±2 ТВт тепла (400 тыс. ТВт*ч в год, что в 17 раз больше всей мировой выработки, и эквивалентно сжиганию 46 млрд тонн угля), а тепловая мощность, вырабатываемая Землей за счет радиоактивного распада урана, тория и калия-40 оценивается в 33±20 28 ТВт, т.е. до 70% теплопотерь Земли восполняется [1] . Использование даже 1% этой мощности эквивалентно нескольким сотням мощных электростанций. Однако, плотность теплового потока при этом составляет менее 0,1 Вт/м 2 (в тысячи и десятки тысяч раз меньше плотности солнечного излучения), что затрудняет ее использование.
В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее +100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.
Геотермальная энергетика подразделяется на два направления: петротермальная энергетика и гидротермальная энергетика. Ниже описана гидротермальная энергетика [2] .
Содержание
Ресурсы
Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.
Россия
На 2006 год в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тысяч м³/сутки. На двадцати месторождениях ведётся промышленная эксплуатация, среди них: Паратунское (Камчатка), Черкесское и Казьминское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).
Достоинства и недостатки
Достоинства
Главным достоинством геотермальной энергии является её практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.
Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.
Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.
Недостатки
Для того, что бы преобразовать тепловую энергию в электрическую с помощью какой-нибудь тепловой машины (например, паровой турбины), необходимо, что бы температура геотермальных вод была достаточно велика, иначе КПД тепловой машины будет слишком низким (например, при температуре воды 40°C и температуре окружающей среды 20°C КПД идеальной тепловой машины составит всего 6%, а КПД реальных машин еще ниже, кроме того, часть энергии будет потрачена на собственные нужды станции — например, на работу насосов, которые качают теплоноситель из скважины и закачивают остывший теплоноситель обратно). Для генерации электроэнергии целесообразно использовать геотермальную воду температурой от 150°C и выше. Даже для отопления и горячего водоснабжения требуется температура не ниже 50°C. Однако, температура Земли растет с глубиной довольно медленно, обычно геотермический градиент составляет всего 30°C на 1 км, т.е. даже для горячего водоснабжения потребуется скважина глубиной более километра, а для генерации электроэнергии — несколько километров. Бурение таких глубоких скважин обходится дорого, кроме того, на перекачку теплоносителя по ним тоже требуется затратить энергию, поэтому использование геотермальной энергии далеко не везде целесообразно. Практически все крупные ГеоЭС расположены в местах повышенного вулканизма — Камчатка, Исландия, Филиппины, Кения, поля гейзеров [en] в Калифорнии (США) и т.д, где геотермический градиент гораздо выше, а геотермальные воды находятся близко к поверхности.
Одна из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления (закачки) воды (обычно отработанной) в подземный водоносный горизонт, на что требуется расход энергии. В термальных водах содержится большое количество солей различных токсичных металлов (например, свинца, цинка, кадмия), неметаллов (например, бора, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности. Закачка отработанной воды необходима еще и для того, что бы давление в водоносном пласте не упало, что приведет к уменьшению выработки геотремальной станции, или ее полной неработоспособности.
Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.
Геотермальная электроэнергетика в мире
Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновляемых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, где отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.
Установленная мощность геотермальных электростанций в мире на начало 1990-х годов составляла около 5 ГВт, на начало 2000-х годов — около 6 ГВт. В конце 2008 года суммарная мощность геотермальных электростанций планеты выросла до 10,5 ГВт [3] .
Страна | Мощность в 2007 г., МВт[4] | Мощность в 2010 г., МВт [5] | Доля в 2010 г. [источник не указан 2669 дней] |
---|---|---|---|
США | 2687 | 3086 | 0,3 % |
Филиппины | 1969,7 | 1904 | 27 % |
Индонезия | 992 | 1197 | 3,7 % |
Мексика | 953 | 958 | 3 % |
Италия | 810,5 | 843 | |
Новая Зеландия | 471,6 | 628 | 10 % |
Исландия | 421,2 | 575 | 30 % |
Япония | 535,2 | 536 | 0,1 % |
Сальвадор | 204,2 | 204 | 14 % |
Кения | 128,8 | 167 | 11,2 % |
Коста-Рика | 162,5 | 166 | 14 % |
Никарагуа | 87,4 | 88 | 10 % |
Россия | 79 | 82 | 0,05 % |
Турция | 38 | 82 | |
Папуа-Новая Гвинея | 56 | 56 | |
Гватемала | 53 | 52 | |
Португалия | 23 | 29 | |
КНР | 27,8 | 24 | |
Франция | 14,7 | 16 | |
Эфиопия | 7,3 | 7,3 | |
Германия | 8,4 | 6,6 | |
Австрия | 1,1 | 1,4 | |
Австралия | 0,2 | 1,1 | |
Таиланд | 0,3 | 0,3 | |
Всего | 9731,9 | 10709,7 |
Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт·ч возобновляемой электроэнергии. В 2009 году суммарные мощности 77 геотермальных электростанций в США составляли 3086 МВт [6] . До 2013 года планируется строительство более 4400 МВт.
Наиболее мощная и известная группа геотермальных электростанций находится на границе округов Сонома и Лейк в 116 км к северу от Сан-Франциско. Она носит название «Гейзерс»(«Geysers») и состоит из 22 геотермальных электростанций с общей установленной мощностью 1517 МВт [7] . «На „Гейзерс“ сейчас приходится одна четвёртая часть всей произведенной в Калифорнии альтернативной [не-гидро] энергии» [8] . К другим основным промышленным зонам относятся: северная часть Солёного моря в центральной Калифорнии (570 МВт установленной мощности) и геотермальные электростанции в Неваде, чья установленная мощность достигает 235 МВт.
Американские компании являются мировыми лидерами в этом секторе, несмотря на то, что геотермальная энергетика начала активно развиваться в стране сравнительно недавно. По данным Министерства Торговли, геотермальная энергия является одним из немногих возобновляемых источников энергии, чей экспорт из США больше, чем импорт. Кроме того, экспортируются также и технологии. 60 % [9] компаний-членов Геотермал Энерджи Ассошиэйшн (Geothermal Energy Association) в настоящее время стремятся делать бизнес не только на территории США, но и за её пределами (в Турции, Кении, Никарагуа, Новой Зеландии, Индонезии, Японии и прочее).
Геотермальная электроэнергетика, как один из альтернативных источников энергии в стране, имеет особую правительственную поддержку.
Филиппины
На 2003 год 1930 МВт электрической мощности установлено на Филиппинских островах, в Филиппинах парогидротермы обеспечивают производство около 27 % всей электроэнергии в стране.
Мексика
Страна на 2003 год находилась на третьем месте по выработке геотермальной энергии в мире, с установленной мощностью электростанций в 953 МВт. На важнейшей геотермальной зоне Серро Прието расположились станции общей мощностью в 750 МВт.
Италия
В Италии на 2003 год действовали энергоустановки общей мощностью в 790 МВт.
Исландия
В Исландии действуют пять теплофикационных геотермальных электростанций общей электрической мощностью 570 МВт (2008), которые производят 25 % всей электроэнергии в стране.
Одна из таких станций снабжает столицу Рейкьявик. Станция использует подземную воду, а излишки воды сливают в гигантский бассейн.
Кения
В Кении на 2005 год действовали три геотермальные электростанции общей электрической мощностью в 160 МВт, существуют планы по росту мощностей до 576 МВт. На сегодняшний день в Кении находится самая мощная ГеоЭС в мире, Олкария IV.
Россия
Впервые в мире неводяные пары как тепловой носитель применены на Паратунской ГеоТЭС в 1967 году. [10]
Сегодня на Камчатке 40 % потребляемой энергии вырабатывается на геотермальных источниках [11] .
По данным института вулканологии Дальневосточного Отделения РАН, геотермальные ресурсы Камчатки оцениваются в 5000 МВт. [12] Российский потенциал реализован только в размере немногим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):
- Мутновское месторождение:
- Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт·э (2011) и выработкой 69,5 млн кВт·ч/год (2010) (81,4 в 2004),
- Мутновская ГеоЭС установленной мощностью 50 МВт·э (2011) и выработкой 360,5 млн кВт·ч/год (2010) (на 2006 год ведётся строительство, увеличивающее мощность до 80 МВт·э и выработку до 577 млн кВт·ч)
- Паужетское месторождение возле вулканов Кошелева и Камбального — Паужетская ГеоТЭС мощностью 14,5 МВт·э (2011) и выработкой 43,1 млн кВт·ч (на 2010 год проводится реконструкция с увеличением мощности до 18 МВт·э).
- Месторождение на острове Итуруп (Курилы): Океанская ГеоТЭС установленой мощностью 2,5 МВт·э (2009). Существует проект мощностью 34,5 МВт и годовой выработкой 107 млн кВт·ч.
- Кунаширское месторождение (Курилы): Менделеевская ГеоТЭС мощностью 3,6 МВт·э (2009).
В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.
В Краснодарском крае эксплуатируется 12 геотермальных месторождений. [13]
Япония
В Японии насчитывается 20 геотермальных электростанций, однако геотермальная энергетика играет незначительную роль в энергетическом секторе страны: в 2013 году этим методом производилось 2596 ГВт/ч электроэнергии, что составляет около 0,25% от общего объёма электроснабжения страны
Классификация геотермальных вод [14]
По температуре
Слаботермальные | до +40 °C |
Термальные | от +40 до +60 °C |
Высокотермальные | от +60 до +100 °C |
Перегретые | более +100 °C |
По минерализации (сухой остаток)
ультрапресные | до 0,1 г/л |
пресные | 0,1—1,0 г/л |
слабосолоноватые | 1,0—3,0 г/л |
сильносолоноватые | 3,0—10,0 г/л |
солёные | 10,0—35,0 г/л |
рассольные | более 35,0 г/л |
По общей жёсткости
очень мягкие | до 1,2 мг-экв/л |
мягкие | 1,2—2,8 мг-экв/л |
средние | 2,8—5,7 мг-экв/л |
жёсткие | 5,7—11,7 мг-экв/л |
очень жёсткие | более 11,7 мг-экв/л |
По кислотности, рН
сильнокислые | до 3,5 |
кислые | 3,5—5,5 |
слабокислые | 5,5—6,8 |
нейтральные | 6,8—7,2 |
слабощелочные | 7,2—8,5 |
щелочные | более 8,5 |
По газовому составу
сероводородные |
сероводородно-углекислые |
углекислые |
азотно-углекислые |
метановые |
азотно-метановые |
азотные |
По газонасыщенности
слабая | до 100 мг/л |
средняя | 100—1000 мг/л |
высокая | более 1000 мг/л |
Петротермальная энергетика
Данный тип энергетики связан с глубинными температурами Земли, которые с определённого уровня начинают подниматься. Средняя скорость её повышения с глубиной — около 2,5 °С на каждые 100 м. На глубине 5 км температура составляет примерно 125 °С, а на 10 км около 250 °С. Добыча тепла производится посредством бурения двух скважин, в одну из которых закачивается вода, которая, нагреваясь, попадает в смежную скважину и выходит в виде пара. Проблема данной энергетики на сегодня — её рентабельность. [2]
Источник