Геотэс какие страны используют

Геотермальная энергия: пройденный этап или шаг в будущее

Геотермальная энергия стала новой надеждой на замедление климатических изменений каких-то 10 лет назад. Возможности, предлагаемые этим источником энергии, на тот момент казались идеальными: он был неисчерпаемым, не зависел от погодных условий и работал круглосуточно. Геотермальная энергия была обозначена как скрытый чемпион среди источников энергии будущего. Тем не менее, первые неудачи произвели отрезвляющий эффект, и риски, связанные с проведением разведки, в частности, сделали инвесторов нерешительными. Здесь подразумевается риск проведения дорогостоящего бурения на месте, но не нахождение достаточного количества термальной воды или требуемых температур недр для экономической реализации проекта. И возникает вопрос: геотермальная энергия и ГеоТЭС – это прошлый век или перспективное будущее? Каков потенциал геотермальной энергии на нашей планете? Давайте разберемся поэтапно, начиная с того, как было, есть и будет.

Краткий исторический экскурс

Многим современникам будет интересен тот факт, что старейший СПА-центр в виде каменного бассейна, который берет свои воды из горячих источников, расположен в Китае и предположительно построен в III веке до нашей эры. Но настоящими первопроходцами были древние римляне. Например, в Помпеях начали использовать геотермальную энергию для обогрева зданий и подогрева воды еще задолго до того, как это сделали китайцы, в VII-VI ст. до н.э.

Читайте также:  Почему страны африки имеют линейные границы

Первый известный в Европе «оздоровительный курорт» с горячими источниками был основан в 1326 году в Бельгии, а первое промышленное использование геотермальной энергии началось в конце XVIII века в Италии. Пар, поступающий из естественных вентиляционных отверстий (и из пробуренных отверстий), использовался для извлечения борной кислоты из горячих бассейнов, которые сейчас известны как месторождения Лардерелло. В 1904 году итальянский ученый Пьеро Джинори Конти изобрел первую геотермальную электростанцию, в которой для производства энергии использовался пар (фото 1).

С помощью вышеуказанного эксперимента в Америке в 1922 году запустили первую ГеоТЭС мощностью 250 киловатт. В 1960-х годах была введена в эксплуатацию первая крупная геотермальная электростанция в Сан-Франциско, вырабатывающая 11 мегаватт электроэнергии. Сегодня же в США работает более 60 геотермальных электростанций на 18 участках по всей стране.

В 1973 году, когда начался нефтяной кризис, многие страны начали искать возобновляемые источники энергии, именно потому к 1980-м годам стали набирать популярность геотермальные тепловые насосы (GHP), которые дали возможность снизить затраты на отопление и охлаждение.

Шло время, происходили явные климатические изменения – и правительства разных стран объединили свои усилия для решения глобальных проблем. Одним из шагов было подписание в Японии в 1997 году Киотского протокола, которым установили целевые показатели выбросов для развитых стран и предусмотрели инвестирование и передачу технологий развивающимся странам. Этот протокол ратифицировали 184 страны.

Наиболее распространенное использование геотермальной энергии в мире

Геотермальную энергию используют для разных сфер и назначений, ниже рассмотрим некоторые из них (рис. 1).

Геотермальные тепловые насосы. Геотермальные (наземные) тепловые насосы имеют наибольшее потребление энергии (55,30%) и установленную мощность (70,95%) в мире. По данным исследований, в 2000 году такие насосы использовали 26 стран, а в 2015-м – уже 48. Лидеры по установленным единицам – США, Китай, Швеция, Германия и Франция.

Отопление помещений. 89% годового потребления энергии приходится на центральное отопление (28 стран). Среди лидеров – Китай, Исландия, Турция, Франция и Германия, тогда как Турция, США, Италия, Словакия и Россия являются основными пользователями в индивидуальном секторе отопления (рис. 2).

Обогрев теплиц и грунта. Активные страны-пользователи: Турция, Россия, Венгрия, Китай и Нидерланды.

Сушка сельскохозяйственных культур. 15 стран используют геотермальную энергию для сушки различных зерновых, овощных и фруктовых культур. Например: Исландия – для сушки водорослей; США – лука; Сербия – пшеницы и других зерновых; Сальвадор, Гватемала и Мексика – фруктов; Новая Зеландия – люцерны, Мексика, Новая Зеландия и Румыния – древесины.

Тепло, используемое для промышленных целей. Зачастую идет круглосуточное потребление энергии. Например: розлив воды и газированных напитков (Болгария, Сербия и США), пастеризация молока (Румыния и Новая Зеландия), кожевенная промышленность (Сербия и Словения), целлюлозно-бумажная обработка (Новая Зеландия), добыча йода и соли (Вьетнам) и т.д.

Таяние снега и льда. Большинство таких проектов в Исландии, Аргентине, Японии и США, а в ограниченной степени – в Польше и Словении. По оценкам, во всем мире отапливается 2,5 миллиона квадратных метров дорожного покрытия, большинство из которых находится в Исландии (74%). В некоторых районах Исландии используется горячая вода от геотермальных электростанций под дорогами и тротуарами, чтобы помочь растопить лед. В Аргентине используется геотермальный пар для таяния снега на шоссе в Андах.

Туризм. Почти в каждой стране есть СПА-центры и курорты, которые имеют бассейны с подогревом геотермальной водой. Более 70 стран используют геотермальную энергию с этой целью, в наибольшей мере – Китай, Япония, Турция, Бразилия и Мексика.

Другое использование. Тринадцать стран используют данную энергию для животноводства, выращивания спирулины, опреснения и стерилизации бутылок. В Новой Зеландии – для орошения и защиты от замерзания геотермального туристического парка.

Сегодняшнее состояние отрасли

Геотермальные технологии рассматриваются многими учеными как потенциальный лидер в переходе к обществу без углерода. Не случайно в 2017 году на КС-21 в Париже был создан Глобальный геотермальный альянс, коалиция из 38 стран, объединившихся с целью усиления роли геотермальной энергии на международной арене.

Буквально за последние три года частично изменилась первая пятерка стран-лидеров по геотермальной установленной мощности (рис. 3, 4).

На сегодня позицию лидера по производству геотермальной электроэнергии удерживают Соединенные Штаты. Индонезия обогнала Филиппины и заняла второе место. Хотя правительство Филиппин прогнозирует удвоение потенциала возобновляемых источников энергии к 2030 году, большая часть которого будет поступать именно от геотермальной энергии, что способствует строительству новых ГеоТЭС в стране.

Осенью 2018 года в Турции и Новой Зеландии запустили новые геотермальные электростанции – это послужило толчком для попадания данных стран в пятерку лидеров (рис.4).

В настоящее время общая мировая мощность составляет 14,37 ГВт. Хотя США по-прежнему являются крупнейшей геотермальной страной, но ограниченная деятельность в области развития приводит к тому, что такие страны, как Индонезия и Турция, становятся более привлекательными для инвесторов.

ТОП-5 геотермальных электростанций мира

  1. Комплекс Geysersмощностью 1,52 ГВт, Калифорния, США. Крупнейшее геотермальное поле в мире, в его состав входит 22 геотермальные электростанции. Geysers обеспечивает потребности в электроэнергии нескольких округов Калифорнии.

2. Комплекс Lardarello, мощность 770 МВт, Италия. Состоит из 34 станций. Фактически 10% мировой геотермальной энергии производится этим единственным комплексом, который к тому же один из старейших в мире.

3. ГеоТЭС Cerro Prieto, мощность 720 МВт, Мексика. Это большой комплекс, состоящий из нескольких геотермальных электростанций, расположенных в мексиканском регионе Нижняя Калифорния.

4. Комплекс Makiling-Banahaw, мощность 460 МВт, Филиппины. Был создан Chevron Geothermal Philippine Holdings, Inc. Коммерческое производство на этом заводе запустили в 1979 году, когда начали работать два блока мощностью 55 МВт. Позже, в 1984 году, на трех электростанциях было установлено еще шесть блоков мощностью 55 МВт. Дальнейшее расширение комплекса произошло, когда в 1994 году было установлено 6 бинарных установок нижнего цикла мощностью 15,73 МВт. В последующие годы были открыты другие энергоблоки, при этом нынешняя мощность комплекса – 460 МВт.

  1. CalEnergy-Salton Sea,мощность340МВт,Калифорния,США. Объект охватывает большую территорию, которая включает в себя 10 станций. Первый блок этого комплекса начал работать в 1982 году, а самый последний введен в эксплуатацию в 2000 году.

Перспектива развития отрасли

Согласно исследованию правительства США, мировая база геотермальных ресурсов больше, чем газ, нефть, уголь и уран вместе взятые. Ученые прогнозируют, что к 2050 году геотермальная энергия США будет обеспечивать 10% энергии страны. В то же время иные исследователи придерживаются мнения, что геотермальная энергия – ограниченный ресурс, хотя геотермальная активность обычно может варьироваться от 5000 до 1 000 000 лет, что квалифицирует ее как возобновляемый ресурс.

Согласно прогнозам МЭА, глобальная геотермальная промышленность к 2023 году будет около 18 ГВт (рис. 5).

Например, Великобритания даже рассматривает возможность строительства самого длинного в мире разъема питания между Великобританией и Исландией, который обеспечил бы поставку большего количества возобновляемой энергии в 1,6 миллиона британских домов, в которых нет геотермальных тепловых насосов. Кроме того, планируется построить первую коммерческую геотермальную электростанцию в Корнуолле (Великобритания), если будут получены все необходимые средства. Это не должно вызывать удивления, поскольку некоторые страны получают прибыль от присутствия геотермальной энергии в больших масштабах. Наиболее известный пример – Исландия, чье электричество устойчиво на 100% и использует энергию ветра, гидро- и, в основном, геотермальную энергию.

А в начале января 2019 года правительство Канады объявило, что предоставит существенное финансирование для первой в стране геотермальной электростанции. Перечень стран, которые планируют в дальнейшем инвестировать в геотермальную энергию и строительство ГеоТЭС, достаточно большой. Наблюдается позитивный инвестиционный климат в данный возобновляемый источник. Цифры говорят сами за себя – у геотермальной энергии перспективное будущее.

Источник

Геотермальные электрические станции

Пост опубликован: 11 мая, 2017

Геотермальная электрическая станция – это комплекс инженерных устройств, преобразующих тепловую энергию планеты в электрическую энергию.

Геотермальная энергетика

Геотермальная энергетика относится к «зеленым» видам энергии. Данный способ энергообеспечения потребителей получил широкое распространение в регионах с термической активностью планеты для различных видов использования.

Геотермальная энергия бывает:

  • Петротермальная, когда источник энергии — слои земли обладающие высокой температурой;
  • Гидротермальная, когда источник энергии — подземные воды.

Геотермальные установки используются для энергоснабжения предприятий сельского хозяйства, промышленности и в жилищно-коммунальной сфере.

Принцип работы геотермальной электростанции

В современных геотермальных установках преобразование тепловой энергии земли в электрическую осуществляют нескольким способами, это:

Прямой метод

В установках такого вида, пар, поступающий из недр земли, работает в непосредственном контакте с паровой турбиной. Пар подается на лопасти турбины, которая свое вращательное движение передает генератору, вырабатывающему электрический ток.

Не прямой метод

В этом случае из земли закачивается раствор, который поступает на испаритель, и уже после испарения, полученный пар поступает на лопасти турбины.

Смешанный (бинарный) метод

В устройствах, работающих по этому методу, вода из скважины поступает на теплообменник, в котором, передает свою энергию теплоносителю, который, в свою очередь, под воздействием полученной энергии испаряется, а образовавшийся пар поступает на лопасти турбины.
В геотермальных установках, работающих по прямому методу (способу) воздействия на турбину, источником энергии служит геотермальный пар.

Во втором методе — используются перегретые гидротехнические растворы (гидротермы), которые обладают температурой выше 180 *С.

При бинарном методе – используются горячая вода, забираемая из слоев земли, а в качестве парообразующей используется жидкости с меньшей температурой кипения (фреон и подобные).

Плюсы и минусы

К достоинствам использования электростанций данного вида можно отнести:

  • Это возобновляемый источник энергии;
  • Огромные запасы в дальней перспективе развития;
  • Способность работать в автономном режиме;
  • Не подверженность сезонным и погодным факторам влияния;
  • Универсальность – производство электрической и тепловой энергии;
  • При строительстве станции не требуется устройство защитных (санитарных) зон.

Недостатками станций являются:

  • Высокая стоимость строительства и оборудования;
  • В процессе работы вероятны выбросы пара с содержанием вредных примесей;
  • При использовании гидротермов из глубинных слоев земли, необходима их утилизация.

Геотермальные станции в России

Геотермальная энергетика, наряду с прочими видами «зеленой» энергетики, неукоснительно развивается на территории нашего государства. По расчетам ученых, внутренняя энергия планеты, в тысячи раз превышает количество энергии содержащейся в природных запасах традиционных видах топлива (нефть, газ).

В России успешно работают геотермальные станции, это:

Паужетская ГеоЭC

Расположена около поселка Паужетка на полуострове Камчатка. Ведена в эксплуатацию в 1966 году.
Технические характеристики:

  1. Электрическая мощность – 12,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 124,0 млн.кВт.часов;
  3. Количество энергоблоков – 2.

Ведутся работы по реконструкции, в результате которой электрическая мощность увеличится до 17,0 МВт.

Верхне-Мутновская опытно-промышленная ГеоЭС

Расположена в Камчатском крае. Введена в эксплуатацию в 1999 году.
Технические характеристики:

  1. Электрическая мощность – 12,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 63,0 млн.кВт.часов;
  3. Количество энергоблоков – 3.

Мутновская ГеоЭС

Наиболее крупная электрическая станция подобного типа. Расположена в Камчатском крае. Введена в эксплуатацию в 2003 году.
Технические характеристики:

  1. Электрическая мощность – 50,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 350,0 млн кВт.часов;
  3. Количество энергоблоков – 2.

Океанская ГеоЭС

Расположена в Сахалинской области. Введена в эксплуатацию в 2007 году.
Технические характеристики:

  1. Электрическая мощность – 2,5 МВт;
  2. Количество энергомодулей – 2.

Менделеевская ГеоТЭС

Расположена на острове Кунашир. Введена в эксплуатацию в 2000 году.

  1. Электрическая мощность – 3,6 МВт;
  2. Тепловая мощность – 17 Гкал/час;
  3. Количество энергомодулей – 2.

В настоящее время ведется модернизация станции, после которой мощность составит 7,4 МВт.

Геотермальные станции в мире

Во всех технически развитых странах, где есть сейсмически активные территории, где внутренняя энергия земли выходит наружу, строятся и эксплуатируются геотермальные электрические станции. Опытом строительства подобных инженерных объектов обладают:

Страна с наибольшим количеством потребления электрической энергии, вырабатываемой гелиотермическим станциями.

Установленная мощность энергоблоков составляет более 3000 МВт- это 0,3% от всей вырабатываемой электрической энергии в США.

Наиболее крупные это:

  1. Группа станций «The Geysers». Расположена в Калифорнии, в состав группы входит 22 станции, установленной мощностью 1517,0 МВт.
  2. В штате Калифорния, станция «Imperial Valley Geothermal Area» установленной мощностью 570,0 МВт.
  3. В штате Невада станция «Navy 1 Geothermal Area» установленной мощностью 235,0 МВт.

Филиппины

Установленная мощность энергоблоков составляет более 1900 МВт, что составляет 27 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Макилинг-Банахау» установленной мощностью 458,0 МВт.
  2. «Тиви», установленная мощность 330,0 МВт.

Индонезия

Установленная мощность энергоблоков составляет более 1200 МВт, что составляет 3,7 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Sarulla Unit I», установленная мощность – 220,0 МВт.
  2. «Sarulla Unit II», установленная мощность — 110,0 МВт.
  3. «Sorik Marapi Modular», установленная мощность — 110,0 МВт.
  4. «Karaha Bodas», установленная мощность – 30,0 МВт.
  5. «Ulubelu Unit» — находится в стадии строительства на Суматре.

Мексика

Установленная мощность энергоблоков составляет 1000 МВт, что составляет 3,0 % от всей вырабатываемой электрической энергии в стране.

  1. «Cerro Prieto Geothermal Power Station», установленной мощностью 720,0 МВт.

Новая Зеландия

Установленная мощность энергоблоков составляет более 600 МВт, что составляет 10,0 % от всей вырабатываемой электрической энергии в стране.

  1. «Ngatamariki», установленной мощностью 100,0 МВт.

Исландия

Установленная мощность энергоблоков составляет 600 МВт, что составляет 30,0 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Hellisheiði Power Station», установленной мощностью 300,0 МВт.
  2. «Nesjavellir», установленной мощностью 120,0 МВт.
  3. «Reykjanes», установленной мощностью 100,0 МВт.
  4. «Svartsengi Geo», установленной мощностью 80,0 МВт.

Кроме выше перечисленных, геотермальные электростанции работают в Австралии, Японии, странах Евросоюза, Африки и Океании.

Источник

Оцените статью