- Топ-10 стран по использованию солнечной энергии
- Германия уже который год является «флагманом» мировой солнечной энергетики, однако в 2013 году рост мощностей в стране был минимальным.
- Пятерка стран, которые используют солнечную энергию больше остальных
- Страны, использующие солнечную энергию
- Германия
- Китай
- Япония
- Италия
- Топ 10 стран, использующие энергию Солнца
- Прорыв в будущее — основные направления использования энергии солнца на земле
- Где используется солнечная энергия?
- Особенности применения
- Пассивные системы
- Активные системы
- Солнечные фотоэлементы
- Солнечные коллекторы
- Преимущества солнечных установок
- Проблемы использования солнечной энергии
- Перспективы развития
Топ-10 стран по использованию солнечной энергии
Германия уже который год является «флагманом» мировой солнечной энергетики, однако в 2013 году рост мощностей в стране был минимальным.
1.Германия
Установленная мощность: 35,3 ГВт
Доля в общемировой солнечной генерации: 25,5%
Германия уже который год является «флагманом» мировой солнечной энергетики, однако в 2013 году рост мощностей в стране был минимальным. Связано это с сокращением государственных дотаций производителям солнечной энергии. Впрочем, планов к 2050 году вырабатывать 80% потребляемой энергии с помощью возобновляемых источников энергии руководство страны не отменяет. Уникальной особенностью производства солнечной энергии в Германии является то, что 90% всех панелей расположены на крышах домов. Кроме того, половина солнечных электростанций принадлежит частным лицам, а не генерирующим компаниям.
2.Китай
Установленная мощность: 19,9 ГВт
Доля в общемировой солнечной генерации: 14,3%
В 2013 году Китай совершил настоящий прорыв в использовании солнечной энергетики, заняв первое место в мире по суммарному увеличению мощности (12,9 ГВт). Этого удалось достичь благодаря огромным капиталовложениям в высокотехнологичное производство. Планы руководства КНР на 2015 год еще более амбициозны: довести мощность солнечных электростанций до 35 ГВт.
3.Италия
Установленная мощность: 17,5 ГВт
Доля в общемировой солнечной генерации: 12,5%
Бум солнечной энергетики в стране начался в 2003 году. Ежегодные дотации в эту отрасль доходили до 10 млрд евро, что делало их самыми большими в мире. С 2005 по 2010 год в Италии законодательно субсидировалась электроэнергия, вырабатываемая с помощью солнечных станций. В последний год темпы роста существенно снизились, но Италия по-прежнему остается одним из главных производителей солнечной энергии, обеспечивая с ее помощью
7% потребностей страны в электроэнергии.
4.Япония
Установленная мощность: 13,5 ГВт
Доля в общемировой солнечной генерации: 9,7%
После аварии на АЭС Фукусима Япония взяла курс на развитие возобновляемых источников энергии (ВИЭ). В 2011 году был принят закон, по которому энергетические компании обязали в течение 20 лет закупать электричество, полученное с помощью ВИЭ. К 2020 году в планах Страны восходящего солнца довести мощность солнечных электростанций до 28 ГВт.
5.США
Установленная мощность: 12,2 ГВт
Доля в общемировой солнечной генерации: 8,7%
США являются лидером в области финансирования исследований солнечной энергии. Кроме того, производители электроэнергии из ВИЭ пользуются широкой государственной поддержкой. Согласно оценкам Министерства энергетики США, на солнечную энергию к 2050 году будет приходиться 27% всей вырабатываемой страной электроэнергии (сейчас 1%).
6.Испания
Установленная мощность: 5,3 ГВт
Доля в общемировой солнечной генерации: 3,8%
Отличные погодные условия и щедрые государственные субсидии сделали Испанию одной из самых привлекательных стран Европы в плане развития солнечной энергетики. Сейчас на ее долю приходится 3% всей потребляемой в стране электроэнергии. Впрочем, в последние годы рост мощностей солнечных электростанций сильно замедлился из-за снижения правительственной поддержки и неблагоприятной экономической ситуации в стране.
7.Франция
Установленная мощность: 4,6 ГВт
Доля в общемировой солнечной генерации: 3,3%
Большинство солнечной энергии во Франции производится на небольших установках, подключенных к электрической сети. Согласно Национальному плану развития ВИЭ Франция к 2015 году планировала довести мощность солнечных электростанций до 3000 МВт и к 2020 году до 5400 МВт. Первая часть задуманного была с успехом реализована еще в 2012 году.
8.Великобритания
Установленная мощность: 3,4 ГВт
Доля в общемировой солнечной генерации: 2,4%
Великобритания является одной из немногих стран Европы, которая за последний год увеличила темпы развития солнечной энергетики. В 2014 году в стране была принята «Стратегия развития солнечной энергетики», по которой к 2020 году планируется довести мощность солнечных электростанций до 20 ГВт.
9.Австралия
Установленная мощность: 3,2 ГВт
Доля в общемировой солнечной генерации: 2,3%
Несмотря на благоприятные для развития солнечной энергетики климатические условия, в Австралии она находится в зачаточном состоянии. Первая солнечная электростанция промышленных масштабов начала работу лишь в 2011 году. Однако в последние годы благодаря государственной поддержке солнечная энергетика в стране развивается быстрыми темпами.
10.Бельгия
Установленная мощность: 2,8 ГВт
Доля в общемировой генерации: 2%
В планах Бельгии к 2025 году полностью отказаться от ядерной энергии, сосредоточившись на возобновляемых источниках. Большая роль в этом отводится развитию солнечной энергетики.
Источник
Пятерка стран, которые используют солнечную энергию больше остальных
Страны, использующие солнечную энергию
Человечество испытывает сильную жажду, если не зависимость, от энергетических ресурсов. Солнечный свет – один из самых очевидных, перспективных и доступных источников. Технологии в этой отрасли пока недостаточно развиты для обширного внедрения, но страны, использующие солнечную энергию больше остальных, активно их улучшают. Вероятно, это сделает их мировыми лидерами в будущем. Сейчас же они становятся ориентирами для «догоняющих», которые строят планы и проекты, заимствуя опыт.
Германия
Германия долго была на первой линии разработки и внедрения технологий, связанных с солнечной энергией. Так, в 2017 году она совокупно произвела 39,9 гигаватта. Несколько раз за счёт питания, полученного от солнечного света, Германии удавалось покрывать 50% ежедневных потребностей.
Долгосрочный переход к «чистой» энергетике сделал её экономику самой большой в мире, основательно опирающейся на возобновляемые энергоносители.
Несмотря на то, что Германию никак нельзя назвать страной, залитой солнечными лучами, она имеет планы на абсолютный переход к использованию солнечных и иных источников. Очевидно, будучи одним из мировых лидеров в продвижении solar energy, Германия фактически ежедневно укрепляет свои позиции в индустрии.
Китай
Китайская Народная Республика – страна с наибольшим населением и крупнейшим углеродным следом в мире. В таких условиях вдохновлённость китайских инженеров возобновляемой энергией – не просто научно-испытательский интерес, а необходимость. С 2015 года Китай лидер по изготовлению и покупке солнечных батарей. Большая часть фотоэлектрических станций и панелей размещается в географически удалённых районах. Они формируют гигантские солнечные фермы, продающие питание коммунальным компаниям. Удивительный рост числа таких энергодобывающих предприятий на всей территории Китая подтверждается фотографиями со спутников.
Резкий подъём интереса к солнечной энергии в Поднебесной обусловлен большой потребностью государства в электричестве. Полагаться на устаревшие традиционные методы его добычи нельзя, когда о критическом загрязнении воздуха в промышленных и экономических центрах КНР говорят во всём мире. В то время как Германия и иные передовые страны более спокойно относятся к вопросу развития этой отрасли, в КНР идёт активное финансовое поощрение «солнечных» идей и проектов. Таким образом, в 2017 году Китай сгенерировал 108,2 ГВт.
Япония
Япония – одна из самых густонаселённых стран мира. К сожалению, её площадь не даёт простора для большого числа солнечных батарей на территории. Но это не создаёт препятствия для едва ли не самой технологичной нации. Япония входит в число лидеров по производству солнечной энергии. В 2017 году объём добычи составил 62,3 ГВт.
После катастрофы на атомной электростанции «Фукусима-1» в 2011 году Япония стала приверженцем альтернативной энергетики. Была поставлена цель удвоить объемы производства электричества из возобновляемых источников.
Один интересный момент в истории страны сыграл положительную роль в решении этой задачи. В 1980-х годах в Японии наблюдалось повальное увлечение гольфом, было построено много полей для этого вида спорта. А ко второму десятку XX века большинство из них остались ненужными. Поля полностью перестали использоваться по назначению в 2015 году. Теперь на их месте располагаются фермы по сбору солнечной энергии.
Так же находчивое островное государство создало плавучие станции по производству электроэнергии, собранные из тысяч водостойких панелей. Подобные фермы, кстати, считаются одной из задумок будущего и высоко оцениваются экспертами, потому что эффективно охлаждаются водой.
Италия
Итальянские солнечные фермы не добывают так много энергии, как немецкие, японские и китайские. В 2017 году направление дало 25,2 гигаватт электроэнергии. Примечательно то, что это составляет 10% от всего потребляемого страной электричества – такого показателя нет ни в одной другом государстве. Правда, срок действия налоговых льгот, которые были предоставлены для производителей ранее, истёк. Много ферм ликвидировано и продано. Поэтому ожидается, что впечатляющие данные по выработке электропитания из итальянского солнечного света пойдут на спад.
Страны, использующие солнечную энергию не обойдутся без США. Это государство с впечатляющими объёмами роста альтернативной энергетики. Так, инвестирование $18 миллиардов помогло увеличить производство в отрасли на 30%. Большую роль в этом расширении играет государственная поддержка. Для объектов жилого сектора, которые пользуются продуктами альтернативных источников, предоставляются скидки.
Благодаря программам, направленным на внедрение данных технологий в ЖКХ, потребление альтернативной энергии коммунальным сектором повысилось на 3,9 гигаватта. Учитывая, что стоимость солнечного питания становится всё более конкурентной относительно невозобновляемых источников, предполагается значительное увеличение темпов производства и числа гелиоэнергетических ферм. За 2017 год США сделало 77,9 ГВт.
Источник
Топ 10 стран, использующие энергию Солнца
Самые развитые страны нашей планеты уже давно поняли, что пора прибегать к неисчерпаемым альтернативным источникам энергии, в частности эффективно использовать солнечную энергию. Среди подобных стран, можно перечислить десять самых основных, то есть лидирующих стран по использованию солнечной энергии. Это Германия, Италия, Япония, США, Испания, Китай, Франция, Чехия, Бельгия и Австралия.
Все эти страны уже не один год используют все преимущества преобразования солнечной энергии в электрическую. Большинство этих стран имеют собственные огромные солнечный заводы, где вырабатывается необходимое для страны «топливо», то есть электроэнергия из преобразованной солнечной энергии.
Бесспорным мировым лидером по использованию солнечной энергии и выработке электроэнергии на ее базе является Германия. К 2050 году Германия планирует 100% обеспечить нужды страны в электроэнергии на базе одних лишь фотовольтаичных панелей и других солнечных инсталляций.
Остальные страны из этой десятки, хоть и немного отстают от Германии по преобразованию солнечной энергии в электрическую, но все же также в ближайшие годы планируют постепенно покрывать все свои нужды в электричестве за счет исключительно солнечной энергии, тем более, что все эти страны просто залиты Солнцем и не использовать этот неисчерпаемый источник энергии было бы просто глупо.
Источник
Прорыв в будущее — основные направления использования энергии солнца на земле
Обновлено: 3 января 2021
Где используется солнечная энергия?
О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.
Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.
Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:
- космос и авиация;
- сельское хозяйство;
- обеспечение энергией спортивных и медицинских объектов;
- освещение участков частных домов или городских улиц;
- использование в быту;
- электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.
Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».
Особенности применения
Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.
Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.
Пассивные системы
Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.
Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.
Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.
В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает. Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону. Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.
Активные системы
Активные солнечные системы получают энергию и преобразуют ее тем или иным способом. В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем. Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.
Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.
Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.
Солнечные фотоэлементы
Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов. Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины. Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.
Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.
Поэтому обычный состав комплекса выглядит следующим образом:
Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии. Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления. Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.
Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.
Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:
- Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
- Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
- Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов
Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:
- на основе теллурида кадмия;
- на базе селенида меди-индия;
- на полимерной основе.
Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.
Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.
Солнечные коллекторы
Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы. Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой. На практике конструкции солнечных коллекторов несколько отличаются:
- Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
- Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
- Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом
Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен. Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах. Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.
Преимущества солнечных установок
- Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
- Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
- Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.
Проблемы использования солнечной энергии
Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.
Перспективы развития
Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.
Источник