Стороны прямоугольника
Свойства
Зная стороны прямоугольника, можно вычислить все остальные его параметры, используя следующий ход действий. Периметр прямоугольника представляет собой удвоенную сумму его сторон, поэтому его можно сразу вычислить. P=2(a+b)
Площадь прямоугольника равна произведению его сторон, поэтому ее также можно найти сразу. S=ab
Диагонали в прямоугольнике являются конгруэнтными, каждая из них образует прямоугольный треугольник со сторонами прямоугольника. Из теоремы Пифагора каждая диагональ будет равна квадратному корню из суммы квадратов сторон прямоугольника. (рис. 56.1) d_1=d_2=√(a^2+b^2 )
Из этого же прямоугольного треугольника можно найти углы α и β при диагоналях, зная только стороны прямоугольника. Отношения катетов друг к другу дают тангенс или котангенс углов треугольника, поэтому α и β будут равны арктангенсу отношений сторон, а дальше значение в градусах можно найти, используя таблицы тангенсов. α=arc tan〖b/a〗 β=arc tan〖a/b〗
Углы γ и δ, образованные пересечением диагоналей, как видно из чертежа, через прямоугольный треугольник с полуосью, равны удвоенным значениям α и β соответственно. (рис.56.2) γ=2α δ=2β
Так как углы у прямоугольника все равны друг другу, вокруг него можно описать окружность. Центр окружности будет находиться в точке пересечения диагоналей, и следовательно, радиус описанной окружности будет равен половине диагонали. (рис.56.3) R=d/2=√(a^2+b^2 )/2
Источник
Cтороны прямоугольника
Длины прямоугольника
Очень часто понятия длины и ширины путаются. Некоторые источники утверждают, что вертикальные стороны прямоугольника – это ширина. Но это редкость, обычно длиной называется большая сторона прямоугольника, а шириной меньшая.
Для лучшего восприятия стоит располагать фигуру так, чтобы длина находилась в основании, а боковые стороны имели размеры ширины. Так будет проще решать задачи.
Перед тем, как перейти непосредственно к решению задач, нужно повторить несколько фактов, которые облегчат решение:
- Диагонали прямоугольника равны.
- Диагонали точкой пересечения делятся пополам.
- Диагонали прямоугольника делят прямоугольник на 4 равнобедренных треугольника, которые равны между собой.
Рис. 1. Прямоугольник
Примеры решения задач
Решим задачу, связанную с формулами вычисления сторон прямоугольника. Рассмотрим несколько вариантов нахождения длин сторон при различных известных параметрах.
Задача 1
- Известно, что площадь прямоугольника равна 21, а периметр 20. Найти стороны прямоугольника.
Такая задача содержит две неизвестных. Величины сторон a и b. Чтобы найти оба значения необходимо составить систему уравнений:
$(a+b)*2=P$ (уравнение нахождения периметра как суммы сторон фигуры)
$a*b=S$ (уравнение для нахождения площади)
При наличии двух неизвестных для решения системы необходимо наличие двух уравнений. Поэтому невозможно найти стороны прямоугольника, зная только площадь или только периметр.
Продолжим решение. Выразим значение a из первого выражения системы.
Подставим получившееся выражение в уравнение нахождения площади:
Это квадратное уравнение. Решим его с помощью теоремы Виета. Такое уравнение будет иметь два корня. Сумма корней будет равна 10, а произведение 21. Такое возможно при значении корней 3 и 7, так как это единственные числа, подходящие под данные условия.
Значит, при $b=3$, $а=10-3=7$
При $b=7$, $a=10-7=3$. То есть в любом случае, стороны будут равны 7 и 3. Это и есть ответ задачи.
Задача 2
- Известно, что сторона прямоугольника равна 16, а диагональ 20. Найти другую сторону прямоугольника.
Рис. 2. Рисунок к задаче.
Задача решается теоремой Пифагора. Диагональ делит прямоугольник на два равных прямоугольных треугольника. В таком треугольнике нам известна гипотенуза (20) и катет (16).
Сумма квадратов катетов равняется квадрату гипотенузы. Искать будем сторону а, предположив, что известная нам сторона это сторона b.
Корень квадратный из 144 равен 12. Это и есть ответ к задаче.
Задача 3
- Известно, что прямоугольник представляет собой ромб. Площадь ромба равна 25, необходимо найти все стороны четырехугольника.
У прямоугольника все углы прямые, а у ромба все стороны между собой равны. Значит, четырехугольник, который одновременно является и ромбом, и прямоугольником это фигура с 4 прямыми углами и сторонами, равными между собой. Такой фигурой может быть только квадрат.
Стороны квадрата равны, значит нас интересует одно значение. Площадь квадрата это значение стороны, возведенное в квадрат.
Что мы узнали?
Мы узнали, как найти длины прямоугольника. Рассмотрели различные типовые ситуации и научились решать задачи, связанные с нахождением длин прямоугольника.
Тест по теме
- Квадрат со стороной 4
- Квадрат со стороной 8
- Никак, это простой прямоугольник
- Это не прямоугольник
Оценка статьи
Средняя оценка: 4.4 . Всего получено оценок: 117.
- Все
- Литература
- Русский язык
- Чтение
- География
- Окружающий мир
- Физика
- Английский язык
- Биология
- Геометрия
- Алгебра
- Математика
- Обществознание
- Химия
- Информатика
- История России
- История
Не понравилось? — Напиши в комментариях, чего не хватает.
Содержание
- Длины прямоугольника
- Примеры решения задач
- Задача 1
- Задача 2
- Задача 3
- Что мы узнали?
Бонус
- Объем прямоугольника
- Длина прямоугольника
- Признаки прямоугольника Cтороны прямоугольника
- Признаки равенства прямоугольных треугольников
- Свойство биссектрисы треугольника
- Уравнение
- Формула
- Что такое отрезок в математике?
- Измерение углов
- Числовые выражения
- Числовые и буквенные выражения
- Диагональ треугольника
- Гипотенуза треугольника
- Основание треугольника
- Формула прямоугольника
- Cложение и вычитание: порядок выполнения
- Свойства вычитания
- Сочетательное свойство сложения
- Переместительное свойство сложения
- Сочетательный закон сложения
- Переместительный закон сложения
- Многоугольник
- Полный угол
показать все
- 1.
DExsaut 104
- 2.
Alina 100
- 3.
Алиса Туманова 93
- 4.
Юрий Острогов 80
- 5.
Ирина Любимова 61
- 6.
Игорь Проскуренко 60
- 7.
Віка Бондар 56
- 8.
Александра Апарина-Иванова 54
- 9.
Кирилл Королёв 52
- 10.
Алина Колотилова 51
- 1.
Игорь Проскуренко 23,766
- 2.
Кристина Волосочева 19,120
- 3.
Ekaterina 18,721
- 4.
Юлия Бронникова 18,580
- 5.
Darth Vader 17,856
- 6.
Алина Сайбель 16,787
- 7.
Мария Николаевна 15,775
- 8.
Лариса Самодурова 15,735
- 9.
Liza 15,165
- 10.
TorkMen 14,876
Самые активные участники недели:
- 1. Виктория Нойманн — подарочная карта книжного магазина на 500 рублей.
- 2. Bulat Sadykov — подарочная карта книжного магазина на 500 рублей.
- 3. Дарья Волкова — подарочная карта книжного магазина на 500 рублей.
Три счастливчика, которые прошли хотя бы 1 тест:
- 1. Наталья Старостина — подарочная карта книжного магазина на 500 рублей.
- 2. Николай З — подарочная карта книжного магазина на 500 рублей.
- 3. Давид Мельников — подарочная карта книжного магазина на 500 рублей.
Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.
Источник