Гидроэнергопотенциал стран, наиболее богатых гидроэнергией, и степень его использования.
Среди стран по размерам экономического гидроэнергетического потенциала особо выделяется первая пятерка в составе Китая (1260 млрд кВт-ч), России (850 млрд), Бразилии (765 млрд), Канады (540 млрд) и Индии (500 млрд кВт ч), на долю которой приходится почти 1/2 всего этого потенциала. Затем следуют ДР Конго (420 кВт-ч), США (375), Таджикистан (265), Перу (260), Эфиопия (260), Норвегия (180), Турция (125), Япония (115 кВт – ч). Степень использования этого потенциала в странах очень различна. Во Франции, в Швейцарии, Италии, Японии он использован уже почти полностью, в США и Канаде на 38–40 %, тогда как в Китае – на 16, в Индии – на 15, в Перу – на 5, а в ДР Конго – на 1,5 %.
Россия обладает очень большими гидроэнергетическими ресурсами. Ее теоретический потенциал оценивается в 2900 млрд кВт-ч, технический – в 1670 млрд, а экономический, как уже отмечено, – в 850 млрд кВт ч в год. Но распределяется он по стране крайне неравномерно: на европейскую ее часть приходится 15 %, а на азиатскую – 85 %. Освоено из него пока лишь 18 % (в том числе в европейской части – 50 %, в Сибири – 19 и на Дальнем Востоке – 4 %).
43. Динамика гидроэнергостроительства в ХХ веке и причины его существенного замедления в 1980-х гг. и в последующие годы вплоть до настоящего времени.
44. Факторы, обусловливающие необходимость пересмотра оценок экономического гидроэнергопотенциала России.
45. Причины удорожания гидростроительства.
Определение электроэнергетики и особенности этой отрасли.
Электроэнергетика –производственно-технологический комплекс, включающий в себя установки для генерирования электроэнергии, совместного производства электрической и тепловой энергии, передачи к абонентским установкам потребителей.
ü Невозможность запаса (моменты потребления и производства совпадают)
ü Мощности затратны по средствам и времени. ТЭС — более 10 лет. Атомные — 15. ГЭС – более 20. Миллиарды $.
ü Резко нарастить мощности невозможно, следовательно, их простой.
ü Выработка электроэнергии от общего количества в РФ: АЭС – 12%, ТЭС – 69%, ГЭС – 19%.
ü Производство и распределение электроэнергии – единый технологический процесс. Вся электроэнергия подаётся в единую сеть. Все потребители используют ее из единой сети. Энергосистема тем надёжнее, чем больше в ней электростанций. Электростанции не заменяют одна другую. Электрическая нагрузка сильно меняется от времени суток. Чем на большее количество суточных поясов раскинулась энергосистема, тем меньше изменение нагрузки и стабильнее она работает.
ü На АЭС менять нагрузку нельзя. ГЭС могут за минуты изменять мощность с нуля до максимума (дешёвая электроэнергия, но большие кап. затраты). ТЭС меняют мощность за часы или сутки, но малые кап. затраты. Газотурбинные генераторы быстро меняют мощность, но топливо много дороже, чем на ТЭС. В системе разные типы станций дополняют друг друга. Чем больше и мощнее система, тем дешевле производство электроэнергии и тем она надёжнее.
Структура выработки электроэнергии (ТЭС, ГЭС, АЭС) в России.
Достоинства и недостатки вертикально интегрированных компаний, предпосылки реформирования электроэнергетической отрасли в 90-х гг. XX века.
В рамках одной энергокомпании осуществляется централизованное хозяйственное и оперативно-технологическое управление всеми стадиями: производством, передачей и сбытом.
Преимущества:
ü «эффект масштаба» — снижение издержек (капиталоемкость, пиковые мощности);
ü снижение риска крупных долгосрочных инвестиций.
Недостатки:
ü Инвестиционные риски на потребителях (тарифы)
ü Несовершенство гос.регулирования тарифов
ü Слабая восприимчивость к инновациям
Предпосылки:
ü Избыточные генерирующие мощности;
ü Энергоустановки небольшой мощности с высокими ТЭ показателями;
ü Расширение использования природного газа (высокоэкономичные маневренные установки);
Источник
Реферат: Гидроэнергетические ресурсы мира
Название: Гидроэнергетические ресурсы мира Раздел: Рефераты по географии Тип: реферат Добавлен 07:35:18 22 июля 2005 Похожие работы Просмотров: 6719 Комментариев: 14 Оценило: 13 человек Средний балл: 4.5 Оценка: 5 Скачать | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
страна | мощность брутто, млн квт при расходах | страна | мощность брутто, млн квт при расходах | ||||
95% обесп. | 50% обесп. | средн. | 95% обесп. | 50% обесп. | средн | ||
Америка | Азия | ||||||
Бразилия | 16,5 | Индия | 31,4 | ||||
Венесуэла | 4,4 | 26,8 | 26,5 | Пакистан | 6,6 | 13,1 | 9,8 |
Канада | 44,8 | 75,9 | Япония | 9,4 | 17,5 | ||
США | 29 | 63,5 | 98,2 | Турция | 10,5 | ||
Чили | 9,5 | 22,6 | 26,6 | Океания | |||
Европа | Австралия | 1,2 | 2,9 | 3,9 | |||
Австрия | 3,2 | 7 | Африка | ||||
Греция | 9,6 | Кот-д’Ивуар | 0,5 | 3,5 | 7,5 | ||
Испания | 14,9 | Габон | 6 | 18 | 21,9 | ||
Италия | 9,2 | 13,3 | 17,4 | Гвинея | 0,5 | 3,5 | 8 |
Норвегия | 18,4 | 20,3 | 21,4 | Камерун | 4,8 | 18,3 | 28,7 |
Португалия | 0,7 | 2,7 | 5,8 | Конго (Браззавиль) | 3 | 9 | 11,3 |
Финляндия | 1,9 | Мадагаскар | 14,3 | 49 | 80 | ||
Франция | 7,7 | Мали | 1 | 4,4 | |||
Германия | 1,6 | 2,8 | Сенегал | 1,1 | 5,5 | ||
Швеция | 22,5 | ЦАР | 3,5 | 10,5 | 13,8 | ||
Югославия | 2,4 | 6,3 | 10,1 | Чад | 2,5 | 4,3 |
Эксплуатационный чистый (или нетто) гидроэнергетический потенциал:
1. технический (или технические гидроэнергоресурсы) — часть теоретического валового речного потенциала, которая технически может быть использована или уже используется (мировой технический потенциал оценивается приблизительно в 12300 млрд. квт-ч);
2. экономический (или экономические гидроэнергоресурсы) — часть технического потенциала, использование которой в существующих реальных условиях экономически оправдано (т.е. экономически выгодно для использования); экономические гидроэнергоресурсы в отдельных странах приведены в табл.4.
В соответствии с этим полная величина мировых потенциальных гидроэнергоресурсов речного стока приведена в табл.2.
Табл.2 Гидроэнергетические ресурсы (полный гидроэнергетический речной потенциал) отдельных континентов
континент | гидроэнергоресурсы | % от итога по земному шару | удельная величина гидроэнергоресурсов, квт/кв.км | |
млн. Квт | млрд. Квт-ч | |||
Европа | 240 | 2100 | 6,4 | 25 |
Азия | 1340 | 11750 | 35,7 | 30 |
Африка | 700 | 6150 | 18,7 | 23 |
Северная Америка | 700 | 6150 | 18,7 | 34 |
Южная Америка | 600 | 5250 | 16 | 33 |
Австралия | 170 | 1500 | 4,5 | 19 |
Итого по земному шару | 3750 | 32900 | 100 | 28 |
бывший СССР | 450 | 3950 | 12 | 20 |
Приведенные расчеты в свое время внесли существенные изменения в прежние представления о распределении гидроэнергоресурсов по континентам. Особенно большие изменения были получены по Африке и Азии. Эти данные показывают, что на Азиатском континенте сосредоточено почти 36 % мировых запасов гидроэнергии, в то время как в Африке, которая считалась наиболее богатой гидроэнергоресурсами, сосредоточено около 19 %. В табл. 3 приводится сопоставление данных, характеризующих распределение гидроэнергоресурсов по континентам, полученных по разным подсчетам. Табл.3 Насыщенность гидроэнергоресурсами территории континентов, тыс. квт-ч на 1 кв. км
Северная Америка | 300 | Европа | 225 |
Южная Америка | 290 | Африка | 200 |
Азия | 265 | Австралия | 170 |
Табл.4 Сопоставление данных о распределении потенциальных гидроэнергетических ресурсов по континентам (% от итога по земному шару)
континент | по данным Геологической службы США | по данным Оксфордского атласа | по данным югославского делегата на IV МИРЭК | по данным ООН | по подсчету, произведенному в СССР |
Европа | 10 | 10,3 | 3,6 | 13,8 | 6,4 |
Азия | 24,2 | 22,8 | 41,2 | 34 | 35,7 |
Африка | 38,7 | 41,1 | 20,5 | 32,2 | 18,7 |
Северная Америка | 14 | 12,7 | 12,6 | 11,4 | 18,7 |
Южная Америка | 9,6 | 10,1 | 19,8 | 7,6 | 16 |
Австралия | 3,5 | 3 | 2,1 | 1 | 4,5 |
Земля в целом | 100 | 100 | 100 | 100 | 100 |
Если даже учесть то, что прежние представления о распределении гидроэнергоресурсов основывались на данных, подсчитанных по стоку 95%-й обеспеченности, то все же нельзя не обратить внимание на исключительную завышенность в прежних представлениях потенциальных ресурсов Африки, исходивших из преувеличенных представлений о стоке рек этого континента. Если годовой сток бассейна реки Конго прежде оценивался в 500-570 мм слоя, то в настоящее время он оценивается всего в 370 мм. Для реки Нигер принимался слой стока 567 мм, а фактически он составляет около 300 мм. То же получается с данными о средней величине слоя стока, являющимися хорошими показателями гидроэнергетического потенциала отдельных континентов (см. табл. 7). Из этой таблицы видно, что по высоте континента и величине стока, т.е. по основным энергетическим показателям, Африка стоит далеко позади Азии и почти на одном уровне с Северной Америкой.
континент | Средняя высота континента, м | высота слоя стока, см | площадь континента, млн. км2 | головой сток, км3 |
Европа | 322 | 26,5 | 9,7 | 2560 |
Азия | 912 | 22 | 44,5 | 9740 |
Африка | 653 | 20,3 | 29,8 | 6070 |
Северная Америка | 658 | 31,5 | 20,4 | 6450 |
Южная Америка | 605 | 45 | 18 | 8130 |
Австралия | 344 | 7,7 | 8 | 610 |
Т.о., распределение гидроресурсов связано в большей мере с географическими особенностями крупнейших рек и их бассейнов. Примерно 50 % мирового водостока приходится на 50 крупнейших рек, бассейны которых охватывают около 40 % суши. Пятнадцать рек из этого числа имеют сток в объеме 10 тыс. км3/с или больше. Девять из них находятся в Азии, три — в Южной и две — в Северной Америке, одна — в Африке.
В гидроэнергоресурсах мира большая часть (около 60 %) приходится на восточное полушарие, которое превосходит западное и по удельному (на единицу площади) показателю гидроресурсной обеспеченности (соответственно 17 и 15 кВт/км2.
Благодаря высокому уровню промышленного развития, страны Западной Европы и Северной Америки в течение длительного времени опережали все другие страны по степени освоения гидроэнергоресурсов. Уже в середине 20-х годов гидропотенциал был освоен в Западной Европе примерно на 6 %, а в Северной Америке, располагавшей в этот период наибольшими гидроэнергетическими мощностями, — на 4 %. Через полвека соответствующие показатели составляли для Западной Европы около 60 %, а для Северной Америки — примерно 35 %. Уже в середине 70-х годов абсолютные мощности ГЭС Западной Европы превосходили таковые в любом другом регионе мира.
В развивающихся странах относительно высокие темпы использования гидроэнергии в значительной мере обусловлены крайне низким исходным уровнем. При более чем 50-кратном увеличение за полвека установленных гидроэнергетических можностей развивающиеся страны в середине 70-х годов более чем в 4,5 раза отставали от развитых стран и по мощности электростанций, и по выработке на них электроэнергии. И если в развитых странах гидропотенциал в середине 70-х использовался примерно на 45 %, то в развивающихся странах — только на 5 %. Для всего мира этот показатель в целом составляет 18 %. Таким образом пока еще для мира характерно использование лишь небольшой части гидроэнергетического потенциала.
В связи с исчерпанием в ряде стран экономических гидроэнергоресурсов в этих странах значительно повысился интерес к сооружению гидроаккумулирующих электростанций (ГАЭС). В Европе стали сооружать специальные ГАЭС еще в 20-30-х годах, но большое развитие они получили начиная с середины 50-х годов. В настоящее время более половины ГАЭС мира находятся в странах ЕС. В США и Канаде гидроаккумулирующие установки в прошлом получили меньшее распространение, чем в Европе, т.к. эти страны располагали большими запасами экономических гидроэнергоресурсов. Однако за последние годы в США и Канаде также повысился интерес к ГАЭС. Также большой интерес в мире в последнее время представляет использование энергии морских приливов для получения электроэнергии, это перспективное направление в гидроэнергетике, т.к. энергия морских приливов возобновляема и практически неисчерпаема — это огромный источник энергии. Во многих странах уже действуют приливные электростанции (ПЭС). Дальше всех в этом направлении пока продвинулась Франция.
Экологический аспект в использовании гидроэнергоресурсов
При использовании гидроэнергоресурсов очень важен экологический аспект. Строительство ГЭС во многих случаях сопровождается сооружением водохранилищ, которые подчас оказывают негативное влияние на экологическую обстановку, вносят ряд изменений в природу. Гидроэнергетика будущего должна при минимальном негативном воздействии на природную среду максимально удовлетворять потребности людей в электроэнергии. Поэтому проблемами сохранения природной и социальной среды при гидротехническом строительстве уделяется сегодня все большее внимание. В современных условиях особенно важен верный прогноз последствий подобного строительства. Результатом прогноза должны стать рекомендации по смягчению и преодолению неблагоприятных экологических ситуаций при строительстве ГЭС, сравнительная оценка экологической эффективности созданных или проектируемых гидроузлов. Таким образом, можно говорить о целесообразности образования новой, более узкой и сложной категории гидроэнергетических ресурсов — экологически эффективной части, дифференцированной по степени экологической нагрузки, вызванной использованием определенной доли гидроэнергопотенциала. К сожалению, на настоящий момент разработка методов определения экологического энергопотенциала практически не ведется, но очевидно, что развитие гидроэнергетики без детальных экологических экспертиз гидроэнергетических проектов способно подорвать и без того хрупкое экологическое равновесие в мире.
Авакян А.Б. «Комплексное использование и охрана водных ресурсов», М: 1990.
Бабурин В.Н. «Гидроэнергетика и комплексное использование водных ресурсов», М: Наука, 1986.
Большая Советская Энциклопедия, М: Сов. Энциклопедия, 1971. — том 6.
Гидроэнергетические ресурсы СССР, М: Наука, 1967.Краткая географическая энциклопедия, М: Сов. Энциклопедия, 1959. — том 2.
Обрезков В.И. «Гидроэнергетика», учебник для ВУЗов, М: 1989.
Топливно-энергетические ресурсы капиталистических и развивающихся стран, М: Наука, 1978.
Источник