- Алюминиевая руда — от добычи до получения металла. Страны-лидеры по добыче алюминия
- Бокситовая руда – основа мирового производства алюминия
- Технология производства
- Производство глинозема
- Получение алюминия из глинозема
- Рафинирование алюминия
- Свойства алюминиевой руды
- Расчет сырья
- Технология разработки алюминиевых залежей. Способы добычи алюминиевой руды
- Страны лидеры по добыче алюминиевых руд
- Рейтинг стран мира по производству и выплавке алюминия на 2020 год
- Разработка месторождений алюминиевых руд в России
- Применение алюминиевой руды
- Альтернатива алюминиевым рудам
- Для чего производят и где применяется алюминий
Алюминиевая руда — от добычи до получения металла. Страны-лидеры по добыче алюминия
Бокситовая руда – основа мирового производства алюминия
Непосредственно сам серебристый металл получают из глинозема. Это сырье представляет собой оксид алюминия (Аl2О3), получаемый с руд:
- Бокситов;
- Алунитов;
- Нефелиновых сиенитов.
Самый распространенный источник получения исходного материала это бокситы, их и считают основной алюминиевой рудой.
Несмотря на уже более чем 130 летнюю историю открытия, понять происхождение алюминиевой руды до сих пор не удалось. Возможно, что попросту в каждом регионе сырье образовалось под воздействием определенных условий. И это создает затруднения, чтобы вывести одну универсальную теорию об образовании бокситов. Основных гипотез происхождения алюминиевого сырья три:
- Они образовались вследствие растворения некоторых типов известняков, как остаточный продукт.
- Боксит получился в результате выветривания древних пород с дальнейшим их переносом и отложением.
- Руда является результатом химических процессов разложения железных, алюминиевых и титановых солей, и выпала как осадок.
Однако, алунитовые и нефелиновые руды образовывались в отличных условиях от бокситов. Первые формировались в условиях активной гидротермальной и вулканической деятельности. Вторые — при высоких температурах магмы.
Алюминиевая руда
Как результат, алуниты, в основном, имеют рассыпчатую пористую структуру. В их составе имеется до 40% различных оксидных соединений алюминия. Но, кроме собственно самой алюмниеносной руды в залежах, как правило, имеются добавки, что влияет на рентабельность их добычи. Считается выгодным разрабатывать месторождение при 50-ти процентном соотношении алунитов к добавкам.
Нефелины обычно представлены кристаллическими образцами, которые кроме алюминиевого оксида содержат добавки в виде различных примесей. Зависимо от состава, такой тип руды классифицируют по типам. Самые богатые имеют в своем составе до 90% нефелинов, второсортные 40-50%, если минералы беднее этих показателей, то не считается нужным вести их разработку.
Имея представления, о происхождении полезных ископаемых, геологическая разведка может довольно точно определить места нахождения залежей алюминиевых руд. Также условия формирования, влияющие на состав и структуру минералов, определяют способы добычи. Если месторождение считается рентабельным, налаживают его разработку.
Технология производства
Технология производства алюминия включает в себя 3 основных этапа:
- Добыча боксита.
- Переработка алюминийсодержащих руд в глинозем.
- Выделение чистого металла из глинозема посредством электролиза и его очистка от лишних примесей.
Производство данного химического элемента осуществляется в электролизном цехе. Он состоит из нескольких корпусов протяженностью 1000 м. В нем располагаются электролизные ванны с большими проводами, подключенными к источнику питания. Ванны оборудованы электродами, находящимися под напряжением 6 В.
Большая часть процессов в электролизном цехе автоматизированы. Перед началом электролиза емкость ванн наполняется расплавленным криолитом. Это вещество предназначено для создания токопроводящей среды при высоких температурах. Дно ванны выступает в качестве катода. Анодом являются угольные блоки, погруженные в криолит.
В промышленности алюминий получают методом пирометаллургии, разработанного немецким химиком Карлом Иосифом Байером. Этот способ представляется собой восстановление металла с помощью углекислого газа или оксида углерода. Все работы на предприятии выполняются в соответствии со схемами производства алюминия, где подробно расписан процесс электролиза глинозема. Изначально в ванну загружается порция глинозема. Под воздействием электричества вещество разлагается. В результате связь между частицами алюминия и кислорода разрывается.
После электролиза на дне электролитических ванне остается чистый алюминий, находящийся в расплавленном состоянии. Кислород, вступая в реакцию углеродом, образуется углекислый газ. Полученный материал разливают по вакуумным ковшам и доставляют в литейный цех. Здесь металл подвергается термической обработке. С помощью переплавки из сплава удаляются лишние примеси. В результате вещество приобретает твердую форму и сортируется по блокам весом до 22 кг.
Алюминий сохраняет свои свойства при длительной эксплуатации. Поэтому часть алюминиевой продукции перерабатывается и повторно используется для создания чистых металлов, что оказывает положительное влияние на экологию. Объем затрат на охрану окружающей среды в этой сфере промышленности составляет 4%. Власти используют множество экономических мер в области ООС, предоставляя льготы предпринимателям, соблюдающим экологические нормы и государственные стандарты в процессе хозяйственной деятельности.
Производство глинозема
Глинозем представляет собой порошок белого цвета, образованный в результате взаимодействия алюминия с кислородом. Технологический процесс производства этого вещества был разработан Байером в конце XIXстолетия. С помощью этой технологии изготавливается 90% глинозема в мире.
При получении порошкообразного оксида алюминия методом Байера можно использовать высококачественные бокситы с низким содержанием примесей. В процессе изготовления глинозема кристаллическая гидроокись алюминия растворяется в каустической щелочи высокой концентрации. Химическая реакция осуществляется при высоких температурах. Посторонние вещества, входящие в состав боксита, при взаимодействии с раствором едкого натра выпадают в осадок. Примеси, отделенные от гидроокиси алюминия, называются красным шламом. В процессе переработки из них можно извлечь соединения кремния, железа, титана и иных химических элементов.
Крупные алюминиевые частицы с помощью фильтрации отделяются от гидроокиси алюминия. Полученное вещество промывают, высушивают и нагревают до температуры кипения воды. В результате образуется глинозем. У него отсутствует срок годности. Хранить глинозем необходимо в сухих местах. Транспортировка вещества осуществляется в железнодорожных вагонах.
Получение алюминия из глинозема
Производители активно совершенствуют технологию производства алюминия из глинозема, стараясь изготавливать металл с минимальными затратами электроэнергии и наименьшим воздействием на окружающую среду. В современных электролитических цехах используются инертные аноды, что позволяет отказаться от использования угля. Их можно использовать в течение нескольких десятилетий.
В результате использования инновационных технологий при электролизе глинозема в атмосферу не выделяется углекислый газ. В электролизных ваннах вырабатывается чистый кислород. Это позволяет снизить траты на вентиляционные механизмы, предназначенные для своевременного удаления углекислого газа из помещения. При электролизе используется не менее 2 Т глинозема, 0,1 Т криолита и небольшое количество фторидов.
Рафинирование алюминия
Образованный в результате электролиза металл содержит небольшое количество металлических и газообразных веществ:
- кремний;
- железо;
- цинк;
- углерод;
- водород;
- азот;
- озон;
- углекислый газ.
Примеси ухудшают свойства металла. Поэтому во время производства их удаляют при помощи рафинирования. Эта процедура осуществляется 2 методами:
- Хлорирование: осуществляется при температуре 750°С. Алюминий подвергается продувке хлористым раствором. Хлорирование производится в специальных ковшах в течение 12 мин.
- Электролитический способ: осуществляется с применением фтористых и хлористых солей. Металл подвергается термической обработке и анодному растворению. В результате из расплавленного вещества удаляются лишние примеси.
После процедуры рафинирования чистота металла составляет 99,5 – 99,9%. При этой процедуры также из рафинируемого вещества также удаляется 1% алюминия.
Свойства алюминиевой руды
Боксит представляет собой сложное соединение оксидов алюминия, железа и кремния (в виде различных кварцев), титана, а также с небольшой примесью натрия, циркония, хрома, фосфора и прочих.
Медная руда: свойства, применение, добыча
Самым важным свойством в производстве алюминия является «вскрываемость» бокситов. То есть насколько просто будет отделить от него ненужные кремниевые добавки, чтобы получить исходное сырье для выплавки металла.
Основа получения алюминия – глинозем. Чтобы он образовался, руду перемалывают в мелкий порошок, и прогревают паром, отделяя большую часть кремния. И уже эта масса будет сырьем для выплавки.
Чтобы получить 1 тонну алюминия, потребуется около 4-5 тонн бокситов, с которых после обработки образуется около 2 тонн глинозема, а уже потом можно получить металл.
Расчет сырья
Для того чтобы получить алюминий, необходимо в электролизер загрузить анодную массу, глинозем, а также фторсоль. Во время действия электролиза из глины получается окислы углерода, а также фтористые соединения в газообразном состоянии. При этом часть анодной массы расходуется в виде пены, которая снимается с поверхности самого электролита.
Чрезмерный расход анодной массы, а также фтористых солей может свидетельствовать о низком качестве самой массы, а также о неправильном обслуживании использованного оборудования.
В теории для получения 1 кг алюминия потребуется 1,9 кг глинозема. Остальная его часть включает в себя всевозможные примеси и потери в процессе производства. Однако на практике сырья может потребоваться гораздо больше, в зависимости от типа глины, используемого оборудования и прочих факторов.
Далее рассмотрена технология литья, производства сварки алюминия аргоном.
Технология разработки алюминиевых залежей. Способы добычи алюминиевой руды
Способы добычи алюминиевой руды
При незначительной глубине залегания алюминиеносных пород их добыча ведется открытым способом. Но, сам процесс срезания пластов руды будет зависеть от ее вида, и структуры.
- Кристаллические минералы (чаще бокситы, или нефелины), снимают фрезерным способом. Для этого используются карьерные комбайны. Зависимо от модели такая машина может вести срез пласта толщиной до 600 мм. Толща породы разрабатывается постепенно, образуя после прохода одного слоя полки.
Это делается для безопасного положения кабины оператора и ходовых механизмов, которые в случае непредвиденного обвала будут находиться на безопасном расстоянии.
- Рыхлые алюминиевоносные породы исключают использование фрезерной разработки. Так как их вязкость забивает режущую часть машины. Чаще всего такие типы пород могут срезать при помощи карьерных экскаваторов, которые тут же грузят руду на самосвалы, для дальнейшей транспортировки.
Транспортирование сырья — это отдельная часть всего процесса. Обычно обогатительные комбинаты по возможности стараются возводить неподалеку от разработок. Это позволяет использовать ленточные транспортеры для подачи руды на обогащение. Но, чаще изъятое сырье перевозят самосвалами. Следующий этап, обогащение и подготовка породы для получения глинозема.
- Руду при помощи ленточного транспортера перемещают в цех подготовки сырья, где может использоваться насколько дробильных аппаратов, измельчающих минералы поочередно до фракции приблизительно в 110 мм.
- Второй участок подготовительного цеха осуществляет подачу подготовленной руды, и дополнительных добавок на дальнейшую переработку.
- Следующий этап подготовки, это спекание породы в печах.
Также на этом этапе, возможна обработка сырья выщелачиванием крепкими щелочами. Результатом становится жидкий алюминатный раствор (гидрометаллургическая обработка).
- Алюминатный раствор проходит стадию декомпозиции. На данном этапе получают алюминатную пульпу, которую в свою очередь отправляют на сепарацию, и выпаривание жидкой составляющей.
- После чего данную массу очищают от ненужных щелочей, и направляют на прокалку в печах. В результате такой цепочки образуется сухой глинозем необходимый для получения алюминия путем гидролизной обработки.
Сложный технологический процесс требует большого количества топлива, и известняка, а также электроэнергии. Это является основным фактором расположения алюминиевых комбинатов – возле хорошей транспортной развязки, и нахождения рядом залежей необходимых ресурсов.
Однако существует и шахтный способ извлечения, когда порода из пластов вырубается по принципу добычи каменного угля. После чего руду отправляют на подобные производства по обогащению, и извлечению алюминия.
Одна из самых глубоких «алюминиевых» штолен находится на Урале в России, ее глубина достигает 1550 метров!
Страны лидеры по добыче алюминиевых руд
Основные месторождения алюминия сосредоточены в регионах с тропическим климатом, а большая часть 73% залежей приходятся на всего 5 стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. Из них самые богатые запасы имеет Гвинея более 5 млрд. тонн (28%от мировой доли).
Если разделить запасы и объемы по добыче, то можно получить следующую картину:
- 1-е место – Африка (Гвинея).
- 2-е место – Америка.
- 3-е место – Азия.
- 4-е место – Австралия.
- 5-е – Европа.
Пятерка лидеров стран по добыче алюминиевой руды представлена в таблице
Страна | Объемы добычи млн. тонн |
Китай | 86,5 |
Австралия | 81,7 |
Бразилия | 30,7 |
Гвинея | 19,7 |
Индия | 14,9 |
Также к основным добытчикам алюминиевых руд относятся: Ямайка (9,7 млн. т.), Россия (6,6), Казахстан (4,2), Гайана (1,6).
Рейтинг стран мира по производству и выплавке алюминия на 2020 год
Лидером с 2002 года по выплавке алюминия в мире вот уже много лет, начиная с 2002 года является Китай. Сегодня Китай выплавляет более половины от мирового производства алюминия в мире. По итогам 2020 года Китай выплавил 36 000 тысяч тонн, тогда как во всем мире было произведено 64 000 тысячи тонн алюминия. Следом за Китаем идут Индия и Россия, они выплавляют примерно равное количество алюминия в год — 3700 и 3600 тысяч тонн соответственно.
Долгое время лидером по производству алюминия в мире были США, вплоть до 2000 года. Сегодня они лишь в конце первой десятки с производством первичного алюминия на уровне около 1100 тысяч тонн. Полный список стран по выплавке первичного алюминия вы можете найти ниже в таблице. В качестве основного источника статистики использовались данные USGS (Геологическая служба США).
Ранг | Страна | Выплавка алюминия,тысяч тонн | Год |
Мир | 64000 | 2019 | |
1 | Китай | 36000 | 2019 |
2 | Индия | 3700 | 2019 |
3 | Россия | 3600 | 2019 |
4 | Канада | 2900 | 2019 |
5 | ОАЭ | 2700 | 2019 |
6 | Австралия | 1600 | 2019 |
7 | Бахрейн | 1400 | 2019 |
8 | Норвегия | 1300 | 2019 |
9 | США | 1100 | 2019 |
10 | Саудовская Аравия | 916 | 2017 |
11 | Исландия | 870 | 2018 |
12 | Малайзия | 760 | 2017 |
13 | ЮАР | 716 | 2017 |
14 | Бразилия | 660 | 2018 |
15 | Катар | 650 | 2017 |
16 | Мозамбик | 577 | 2017 |
17 | Германия | 550 | 2017 |
18 | Аргентина | 433 | 2017 |
19 | Франция | 430 | 2017 |
20 | Испания | 360 | 2017 |
21 | Иран | 338 | 2017 |
22 | Новая Зеландия | 337 | 2017 |
23 | Румыния | 282 | 2017 |
24 | Египет | 279 | 2017 |
25 | Казахстан | 256 | 2017 |
26 | Оман | 253 | 2017 |
27 | Индонезия | 219 | 2017 |
Разработка месторождений алюминиевых руд в России
В нашей стране есть несколько богатых залежей алюминиевых руд, сосредоточенных на Урале, и в Ленинградской области. Но, основным способом добычи бокситов у нас, является более трудоемкий закрытый шахтный метод, которым извлекают около 80% от общей массы руд в России.
Иностранные инвестиции в промышленности России
Лидеры по разработке месторождений – акционерное общество «Севуралбокситруда», АО Бакситогорский глинозем, Южно-Уральские бокситовые рудники. Однако их запасы исчерпываются. Вследствие чего России приходится импортировать около 3 млн. тонн глинозема в год.
Месторождение | Запасы |
Красная Шапочка (Урал) | На 19 лет добычи |
Горностайское и Горностайско-Краснооктябрьское | На 18 лет добычи |
Блиново-Каменское | 10 лет |
Кургазское | 10 лет |
Радынский карьер | 7 лет |
В общей сложности на территории страны разведано 44 месторождения различных алюминиевых руд (бокситов, нефелинов), которых по оценкам, должно хватить на 240 лет, при такой интенсивности добычи как сегодня.
Импорт глинозема обусловлен низким качеством руды в залежах, например, на месторождении Красная Шапочка добывают боксит с 50% глиноземным составом, тогда как в Италии извлекают породу с 64% оксида алюминия, а в Китае 61%.
Применение алюминиевой руды
В основном до 60% рудного сырья используется для получения алюминия. Однако богатый состав позволяет извлекать из него, и другие химические элементы: титан, хром, ванадий и прочие цветные металлы, необходимые в первую очередь в качестве легирующих добавок для улучшения качеств стали.
Как вспоминалось выше технологическая цепочка получения алюминия обязательно проходит через стадию образования глинозема, который также используют в качестве флюсов в черной металлургии.
Как распределяются расходы на поддержку промышленности?
Богатый состав элементов в алюминиевой руде используется и для производства минеральной краски. Также способом плавки производится глиноземный цемент – быстро застывающая прочная масса.
Еще один материал, получаемый из бокситов – электрокорунд. Его получают путем плавления руды в электропечах. Это очень твердое вещество, уступающее только алмазу, что делает его востребованным в качестве абразива.
Также в процессе получения чистого металла образуются отходы – красный шлам. Из него извлекают элемент – скандий, который применяется в производстве алюминиево-скандиевых сплавов, востребованных в автомобильной промышленности, ракетостроении, выпуске электроприводов, и спортивного оборудования.
Альтернатива алюминиевым рудам
Развитие современного производства требует все больших объемов алюминия. Однако не всегда рентабельно разрабатывать месторождения, или импортировать глинозем из-за границы. Поэтому все чаще используется выплавка металла с использованием вторичного сырья.
Импортозамещение — фактор экономической безопасности страны
Например, такие страны как США, Япония, Германия, Франция, Великобритания в основном производят вторичный алюминий, по объемам составляющий до 80% от общемировой выплавки.
Вторичный металл обходится намного дешевле, в сравнении с первичным, для получения которого тратится 20000 кВт энергии/1 тонну.
На сегодня алюминий, получаемый с различных руд, один из востребованных материалов позволяющих получать прочные и легкие изделия, не поддающиеся коррозии. Альтернатив металлу пока не найдено, и в ближайшие десятилетия объемы добычи руды, и выплавки будут только расти.
Для чего производят и где применяется алюминий
Алюминий — это легкий металл. Алюминий является самым распространенным металлом в мире. Благодаря своей легкости, прочности, функциональности и стойкости к коррозии, алюминий стал популярен и используется во многих конструкциях.
Если присмотреться, то практически где бы вы не находились, вы можете найти алюминий. Он используется в домах, в транспорте, в различной технике, в том числе мобильных телефонах и компьютерах, и в других предметах быта — холодильниках, микроволновках, в мебели и так далее.
Однако, использование алюминия еще сотню лет назад было минимальным. А 200 лет назад о металле и вовсе мало что знали. Алюминий занимает около 8 % всей земной коры и является третьим по распространенности элементом после кислорода и кремния. Несмотря на свою распространенность, алюминий не встречается в природе в чистом виде, именно поэтому его долго практически никак не использовали. Алюминий в первые был получен только в 1824 году, и лишь спустя 50 лет начал активно использоваться в промышленности.
Алюминий в три раза легче железа, при этом прочен практически как сталь, и вдобавок пластичен. Он не магнитится и проводит электрический ток. Способен образовывать сплавы практически со всеми другими металлами.
Все эти свойства позволили алюминию стать самым популярным металлом для человека. Этот металл используется во всех современных и высокотехнологичных отраслях промышленности — строительной, автомобильной, энергетической, авиационной, пищевой, космической. Также применяется в современной электронной технике, в кораблестроении и других отраслях.
Источник